Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Vinh
Bài làm:
Lời giải bài 5 :
Đề bài :
Cho a, b, c là các số thực dương thỏa mãn điều kiện . Tìm giá trị lớn nhất của biểu thức A= ab + bc + ca + a + b + c.
Hướng dẫn giải chi tiết :
Vì a , b , c > 0 =>
=>
=> . (1)
Ta có :
=>
=> (2)
Cộng (1) với (2) theo vế => .
Dấu " = " xảy ra <=> a = b = c = 1 .
Vậy GTLN của A = 6 khi a = b = c =1 .
Xem thêm bài viết khác
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường THPT chuyên Thái Bình
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Câu 1 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Lời giải Câu 6 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Hồng Phong
- Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 Trường chuyên TP HCM
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Amtesdam Hà Nội
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội