-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Lời giải Câu 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Lê Qúy Đôn
Bài làm:
Lời giải câu 4 :
Đề bài :
Cho phương trình : ( m là tham số )
a. Khi m = -2 , giải phương trình đã cho .
b. Tìm các giá trị m để phương trình đã cho có nghiệm .
Hướng dẫn giải chi tiết :
(*)
a. Khi m = -2 thay vào (*) ta có :
(**) ( Đk : $x\neq 0$ )
Đặt
(**) <=>
<=>
+ Với t = 0 <=>
=> Hoặc x = 1 hoặc x = -1 .
+ Với t = -1 <=>
Ta có :
=> Phương trình có hai nghiệm phân biệt :
Áp dụng Đk : , các nghiệm đều thoản mãn.
Vậy phương trình có tập nghiệm : .
b. (1) ( Đk : $x\neq 0$ )
Đặt
(1) <=>
Để (2) có hai nghiệm phân biệt <=> .
Với mỗi giá trị của t là nghiệm của (1) nên ta có :
(3)
Nhận xét : Ta thấy phương trình (3) luôn có 2 nghiệm phân biệt do a và c trái dấu.
Vậy để phương trình đã cho có nghiệm <=> .
Xem thêm bài viết khác
- Lời giải Bài 1 Đề thi thử trường THPT chuyên Amtesdam Hà Nội
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của Trường chuyên Lam Sơn Thanh Hóa
- Lời giải Bài 1 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT chuyên TP HCM
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT chuyên Lê Hồng Phong
- Lời giải Câu 3 Đề thi thử lên lớp 10 môn toán năm 2017 của trường THPT chuyên Nguyễn Trãi
- Lời giải Bài 5 Đề thi thử lên lớp 10 môn toán lần 4 năm 2017 của trường THPT chuyên Sư Phạm Hà Nội
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của Trường THPT chuyên Vinh
- Đề thi thử lên lớp 10 môn toán lần 3 năm 2017 của trường THPT chuyên Nguyễn Huệ
- Lời giải Bài 1 Đề thi thử trường THPT chuyên Đà Nẵng
- Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 Trường chuyên Lam Sơn Thanh Hóa
- Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 Trường THPT chuyên Thái Bình