Giải câu 3 trang 114 toán VNEN 9 tập 2
Câu 3: Trang 114 toán VNEN 9 tập 2
Cho nửa đường tròn đường kính AB và điểm C di động trên cung AB. Lấy AC làm cạnh, vẽ tam giác đều ACD sao cho D và B là hai điểm khác phía so với đường thẳng AC. Gọi E là giao điểm của CD với cung AB. Gọi M là trung điểm của đoạn thẳng DC. Chứng minh rằng: Khi điểm C di động trên cung AB thì điểm M thuộc nửa đường tròn đường kính AE.
Hướng dẫn: Xem hình 101
Theo giả thiết ta có nên $\widehat{ACE} = 120^\circ$ mà ACEB là tứ giác nội tiếp nên $\widehat{ABE} = 60^\circ$.
Do A, B cố định, (không đổi) nên điểm E cố định.
Theo giả thiết ACD là tam giác đều và M là trung điểm của đoạn DC nên , hay $\widehat{90^\circ}$.
Như vậy, do điểm M di động nhưng luôn nhìn đoạn thẳng AE
Bài làm:
Theo giả thiết ta có nên $\widehat{ACE} = 120^\circ$ mà ACEB là tứ giác nội tiếp nên $\widehat{ABE} = 60^\circ$.
Do A, B cố định, (không đổi) nên điểm E cố định.
Theo giả thiết ACD là tam giác đều và M là trung điểm của đoạn DC nên , hay $\widehat{90^\circ}$.
Như vậy, do điểm M di động nhưng luôn nhìn đoạn thẳng AE một góc không đổi nên M thuộc nửa đường tròn đường kính AE khi C di động.
Xem thêm bài viết khác
- Giải VNEN toán 9 bài 11: Độ dài đường tròn - cung tròn
- Giải câu 2 trang 48 sách toán VNEN lớp 9 tập 2
- Giải câu 2 trang 145 toán VNEN 9 tập 2
- Giải câu 5 trang 22 sách toán VNEN lớp 9 tập 2
- Giải câu 5 trang 145 toán VNEN 9 tập 2
- Giải câu 6.8 trang 69 toán VNEN 9 tập 2
- Giải câu 7 trang 21 sách toán VNEN lớp 9 tập 2
- Giải câu 3 trang 110 toán VNEN 9 tập 2
- Giải VNEN toán 9 bài 2: Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích hình nón, hình nón cụt
- Giải câu 4 trang 102 toán VNEN 9 tập 2
- Giải câu 4 trang 161 toán VNEN 9 tập 2
- Giải câu 3 trang 61 toán VNEN 9 tập 2