-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Ôn thi lên lớp 10 môn Toán Chuyên đề Phương trình , hệ phương trình bậc nhất
Chuyên đề là kết quả thu được qua thời gian học tập và nghiên cứu về hệ phương trình.Rất mong được các bạn quan tâm và chia sẻ đề hoàn thiện chuyên đề hơn. Hi vọng nó sẽ là tài liệu bổ ích giúp chúng ta vượt qua 1 chẳng nhỏ trong chặng đường chinh phục toán học.
Dạng 1: Giải và biện luận phương trình bậc nhất .
I . Phương pháp giải
Bước 1 : Biến đổi phương trình đã cho về dạng : ax + b = 0 (1)
Bước 2 : Xét các trường hợp sau :
- TH 1 : a = 0 thế vào (1) và kiểm tra .
- TH 2 : => $x=-\frac{b}{a}$ .
Bước 3 : Kết luận .
Bài tập minh họa :
Bài 1:
Giải và biện luận phương trình : 2x + 3m = mx + 2 (1)
Hướng dẫn :
Từ (1) <=> (2 - m )x = 2 - 3m (2)
Nếu m = 2 thì (2) <=> 0x = -4 (vô lý ) => (2) vô nghiệm.
Nếu thì (2) <=> $x=\frac{2-3m}{2-m}$ .
Kết luận :
Với m = 2 => (1) vô nghiệm.
Với => (1) có nghiệm duy nhất $x=\frac{2-3m}{2-m}$ .
Bài 2 :
Giải và biện luận : (1)
Hướng dẫn:
Đk :
(1) <=> (3m - 3)x= 2m + 1 (2)
Nếu 3m - 3 = 0 <=> m = 1 => (2) vô nghiệm.
Nếu thì (2) <=> $x=\frac{2m+1}{3m-3} $
Áp dụng đk : ta có : $x=\frac{2m+1}{3m-3}\neq \pm 1 $
<=> .
Kết luận :
Với m = 1, m = 4, m = => (1) vô nghiệm.
Với => (1) có nghiệm duy nhất $x= \frac{2m+1}{3m-3}$ .
Bài 3:
Giải và biện luận phương trình : (1)
Hướng dẫn :
Đk : x > 0.
(1) <=> 2mx - 3 = x - m = (2m - 1)x = 3 - m (2)
Nếu => (2) vô nghiệm.
Nếu thì (2) <=> $x=\frac{2m-1}{3-m}$.
Với Đk : x > 0 <=> .
Vậy .
II. Bài tập áp dụng
Lưu ý : Các bạn áp dụng kiến thức đã học cùng việc tham khảo bài tập minh họa để tự giải quyết các bài tập sau:
Bài 1 :
Giải và biện luận phương trình :
Bài 2:
Giải và biện luận phương trình : 2(x + 2)+ 3(m - 1) = mx + 2 .
Dạng 2: Nghiệm của phương trình bậc nhất thỏa mãn điều kiện cho trước
I .Phương pháp giải
Bước 1 : Biến đổi phương trình đã cho về dạng : ax + b = 0 (1)
Bước 2 : Tìm điều kiện của a để (1) có nghiệm sao cho thỏa mãn điều kiện cho trước .
Bài tập minh họa :
Bài 1:
Cho phương trình : (2m + 1)x - 3m + 2 = 3x + m . (1)
Tìm m để phương trình có nghiệm .
Hướng dẫn :
(1) <=> (2m - 2)x = 4m - 2 <=> (m - 1)x = 2m - 1 . (2)
Nếu m = 1 => (2) vô nghiệm.
Nếu thì (2) <=> $x=\frac{2m-1}{m-1}$ .
Theo bài ra : nghiệm <=> $0
<=>
<=> Hoặc hoặc m>2.
Vậy .
Bài 2:
Cho phương trình : (1)
Tìm m đề phương trình có 2 nghiệm phân biệt.
Hướng dẫn:
(1) <=> Hoặc x = 1 hoặc .
<=> Hoặc x = 1 hoặc .
Để (1) có 2 nghiệm phân biệt => (2) có đúng 1 nghiệm > 1.
<=>
<=>
<=>
Vậy để thỏa mãn yêu cầu đề bài ta có .
II. Bài tập áp dụng
Lưu ý : Các bạn áp dụng kiến thức đã học cùng việc tham khảo bài tập minh họa để tự giải quyết các bài tập sau:
Bài 1:
Cho phương trình : (3m - 2)x - m = 4mx + 2m - 5
Tìm m để phương trình có nghiệm nguyên.
Bài 2:
Cho phương trình : (2m - 1) + (3 - n)(x - 2) - 2m + n + 2 = 0.
Tìm m , n để phương trình có nghiệm đúng .
Dạng 3: Giải và biện luận phương trình bậc hai
I . Phương pháp giải
Phương trình bậc hai có dạng : (1)
Xét a = 0 => (1) <=> bx + c = 0 . Biện luận phương trình bậc nhất.
Xét Ta tính $\Delta$ hoặc $\Delta{}'$.
- Nếu > 0 => (1) có 2 nghiệm phân biệt : $x_{1}=\frac{-b+\sqrt{\Delta }}{2a},x_{2}=\frac{-b-\sqrt{\Delta }}{2a}$
- Nếu = 0 => (1) có nghiệm kép : $x_{1}=x_{2}=\frac{-b}{2a}$.
- Nếu < 0 => (1) vô nghiệm.
Chú ý : Nếu tính theo thì công thức lấy nghiệm cũng tương tự.
Kết luận.
Bài tập minh họa :
Bài 1:
Giải và biện luận phương trình : ( theo tham số m ). (1)
Hướng dẫn:
Với m - 1 = 0 <=> m = 1 => (1) <=> - x + 2 = 0 <=> x = 2.
Với Ta có:
Nếu > 0 => $m
<=> (1) có 2 nghiệm phân biệt :
Nếu > 0 => $m=\frac{13}{12}$
<=> (1) có nghiệm kép :
Nếu < 0 =>$m>\frac{13}{12}$ => (1) vô nghiệm.
Vậy m = 1 => (1) có nghiệm x = 2.
=> (1) có nghiệm x = 5.
=> (1) vô nghiệm.
=> (1) có 2 nghiệm phan biệt : $x_{1,2}=\frac{3-2m\pm \sqrt{13-12m}}{2(m-1)}$ .
Bài 2:
Giải và biện luận phương trình : ( tham số a) (1)
Hướng dẫn:
Đk : <=> $\left\{\begin{matrix}x\neq 2 & \\ x\neq 1 & \end{matrix}\right.$
(1) <=> (2)
Ta có :
Nếu <=> - 2 < a < 2 <=> (2) vô nghiệm => (1) vô nghiệm .
Nếu <=> Hoặc a = 2 hoặc a = - 2 <=> (2) có nghiệm kép : x = a + 1.
Với a = 2 => x = 3. (nhận)
Với a = -2 => x = - 1 (nhận)
Nếu <=> | a | =2.
Vì (2) phải có 2 nghiệm thỏa mãn đk : nên :
<=>
<=>
<=> .
=> 2 nghiệm là :
Kết luận :
Nếu | a | < 2 hoặc => (1) vô nghiệm.
Nếu => (1) có nghiệm kép : $x=-1\vee x=3$
Nếu => (1) có 2 nghiệm phân biệt : $x_{1,2}=a+1\pm \sqrt{a^{2}-4}$
II. Bài tập áp dụng
Lưu ý : Các bạn áp dụng kiến thức đã học cùng việc tham khảo bài tập minh họa để tự giải quyết các bài tập sau:
Bài 1 :
Giải và biện luận phương trình sau theo a , b :
(1)
Bài 2:
Giải và biện luận phương trình :
với $-1\leq x\leq 1$ (1)
- - - - - Chúc các bạn làm bài tốt ! - - - - -
Xem thêm bài viết khác
- Lời giải bài 4 chuyên đề Bài toán Dựng hình
- Đề thi thử vào lớp 10 môn Toán phòng GD Long Biên, Hà Nội năm 2022 Đề thi thử vào lớp 10 môn Toán 2022
- Đáp án đề thi vào lớp 10 môn Toán Quảng Ngãi năm 2022 Đề thi môn Toán vào lớp 10 Quảng Ngãi năm 2022
- Đáp án đề thi vào lớp 10 môn Toán Lào Cai năm 2022 Đề thi môn Toán vào lớp 10 tỉnh Lào Cai năm 2022
- Đáp án đề thi vào lớp 10 môn Toán Kon Tum năm 2022 Đề thi môn Toán vào lớp 10 Kon Tum năm 2022
- Đề thi thử Toán vào 10 THPT Điềm Thụy, Thái Nguyên năm 2022 Đề thi thử vào lớp 10 môn Toán
- Đáp án đề thi vào lớp 10 môn Toán Nghệ An năm 2022 Đề thi môn Toán vào lớp 10 tỉnh Nghệ An năm 2022
- Giải câu 2 đề 16 ôn thi toán lớp 9 lên 10
- Lời giải bài 3 chuyên đề Vận dụng bất đẳng thức Côsi để tìm cực trị
- Đáp án đề thi vào lớp 10 môn Toán Hà Nam năm 2022 Đề thi môn Toán vào lớp 10 Hà Nam năm 2022
- Giải câu 1 đề 6 ôn thi toán lớp 9 lên 10
- Đáp án đề thi vào lớp 10 môn Toán Điện Biên năm 2022 Đề thi vào 10 môn Toán Điện Biên năm 2022