-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 77 bài 11: Hình thoi sgk Toán hình 8 tập 1 Trang 106
Câu 77 : Trang 106 sgk toán 8 tập 1
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình thoi là tâm đối xứng của hình thoi.
b) Hai đường chéo của hình thoi là hai trục đối xứng của hình thoi.
Bài làm:
Hình thoi ABCD có O là giao điểm của hai đường chéo.
a) Hình bình hành nhận giao điểm hai đường chéo là tâm đối xứng. Hình thoi cũng là một hình bình hành nên giao điểm hai đường chéo hình thoi là tâm đối xứng của hình. Vậy O là tâm đôi xứng của hình thoi ABCD.
b) BD là đường trung trực của AC (do BA = BC, DA = DC) nên A đối xứng với C qua BD.
B và D cũng đối xứng với chính nó qua BD.
Do đó BD là trục đối xứng với chính nó qua BD.
Do đó BD là trục đối xứng của hình thoi.
Tương tự AC cũng là trục đối xứng của hình thoi.
Vậy hai đường chéo của hình thoi là hai trục đối xứng của hình thoi.
Xem thêm bài viết khác
- Giải câu 62 bài 10: Chia đơn thức cho đơn thức sgk Toán đại 8 tập 1 Trang 27
- Giải bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử sgk Toán đại 8 tập 1 trang 21 23
- Giải câu 47 bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử sgk Toán đại 8 tập 1 trang 22
- Giải bài 2: Tính chất cơ bản của phân thức sgk Toán 8 tập 1 Trang 36 38
- Giải câu 3 bài 1: Phân thức đại số sgk Toán 8 tập 1 Trang 36
- Giải câu 14 bài 2: Luyện tập sgk Toán đại 8 tập 1 Trang 9
- Giải câu 46 bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức sgk Toán 8 tập 1 Trang 57
- Giải câu 65 bài: Luyện tập sgk Toán hình 8 tập 1 Trang 100
- Giải câu 27 bài 4: Những hằng đẳng thức đáng nhớ (tiếp) sgk Toán đại 8 tập 1 Trang 14
- Giải câu 71 bài: Luyện tập sgk Toán 8 tập 1 Trang 103
- Giải câu 24 bài 3: Luyện tập sgk Toán đại 8 tập 1 Trang 12
- Giải câu 9 bài 3: Rút gọn phân thức sgk Toán 8 tập 1 Trang 40