Giải câu 3 trang 16 toán VNEN 9 tập 1
Câu 3: Trang 16 sách VNEN 9 tập 1
Áp dụng bất đẳng thức Cô-si cho hai số không âm. Chứng minh:
a) Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
b) Trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.
Bài làm:
a) Gọi độ dài hai cạnh của hình chữ nhật là a, b (a > 0, b > 0) và chu vi không đổi của hình chữ nhật là k.
Áp dụng bất đẳng thức Cô-si cho hai số dương a,b, ta có $\geq $ $\sqrt{ab}$ hay $(\frac{k}{4})^{2}$ $\geq $ a.b
Diện tích hình chữ nhật lớn nhất bằng , đẳng thức xảy ra khi a = b.
Vậy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
b) Gọi độ dài hai cạnh của hình chữ nhật là a, b (a > 0, b > 0) và diện tích không đổi của hình chữ nhật là m.
Áp dụng bất đẳng thức Cô-si cho hai số dương a,b, ta có $\geq $ $\sqrt{ab}$ hay 2(a + b) $\geq $ 4$\sqrt{m}$
Chu vi hình chữ nhật bé nhất bằng 4 , đẳng thức xảy ra khi a = b.
Vậy trong các hình chữ nhật có cùng diện tích thì hình vuông có chu vi bé nhất.
Xem thêm bài viết khác
- Giải toán VNEN 9 bài 7: Biến đổi đơn giản biểu thức chứa căn thức bậc hai
- Giải câu 1 trang 65 toán VNEN 9 tập 1
- Giải toán VNEN 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Giải câu 2 trang 122 toán VNEN 9 tập 1
- Giải câu 2 trang 15 toán VNEN 9 tập 1
- Giải câu 1 trang 72 toán VNEN 9 tập 1
- Giải toán VNEN 9 bài 9: Căn bậc ba
- Giải câu 4 trang 09 sách toán VNEN lớp 9 tập 1
- Giải toán VNEN 9 bài 4: Vị trí tương đối của đường thẳng và đường tròn. Tiếp tuyến của đường tròn
- Giải câu 3 trang 125 toán VNEN 9 tập 1
- Giải câu 5 trang 07 sách toán VNEN lớp 9 tập 1
- Giải câu 1 trang 34 toán VNEN 9 tập 1