-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Lời giải Ví dụ 4 Các dạng toán thường gặp trong đề thi tuyển sinh vào 10
Bài làm:
Lời giải ví dụ 4 :
Đề ra :
Cho phương trình :
( x là ẩn số ) (1)
a. Chứng minh (1) luôn có hai nghiệm phân biệt với mọi giá trị m .
b. Định m để hai nghiệm
của (1) thỏa mãn : $(1+x_{1})(2-x_{2})+(1+x_{2})(2-x_{1})=x_{1}^{2}+x_{2}^{2}+2$ .
< Trích đề thi tuyển sinh vào 10 THPT , TP Hồ Chí Minh năm 2016 - 2017 >
Lời giải chi tiết :
( x là ẩn số ) (1)
a. Ta có : ![]()
<=> ![]()
Vì : ![]()
=> (1) luôn có hai nghiệm phân biệt với mọi giá trị m . ( đpcm )
b. Áp dụng hệ thức Vi-et , ta có : ![]()
Do đó :
.
<=> ![]()
<=> ![]()
<=> ![]()
<=>
(*)
Nhận xét : (*) có dạng : a + b + c = 0
=> (*) có hai nghiệm phân biệt : ![]()
Vậy để hai nghiệm
của (1) thỏa mãn : $(1+x_{1})(2-x_{2})+(1+x_{2})(2-x_{1})=x_{1}^{2}+x_{2}^{2}+2$ thì m = 1 hoặc $m=\frac{-1}{2}$ .
Xem thêm bài viết khác
- Đáp án Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT Quang Trung
- Hướng dẫn giải câu 2 đề thi Toán vào 10 Năm 2017 TP HCM
- Lời giải Bài 2 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT Cầu Giấy
- Hướng dẫn giải câu 3 đề thi Toán vào 10 Năm 2017 TP HCM
- Lời giải Bài 4 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT Cầu Giấy
- Lời giải Bài 1, Bài 2 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT Cầu Giấy
- Đáp án câu V môn Toán đề thi tuyển lên lớp 10 ở Hà Nội năm 2017
- Đề thi và đáp án môn Toán kì thi tuyển sinh lên lớp 10 tại Tp.HCM 03/06/2017
- Một số bài toán Thực tế thường gặp trong đề tuyển sinh vào 10 năm 2017
- Lời giải Bài 2-Một số bài toán Hình học thường gặp trong đề tuyển sinh vào 10 năm 2017
- Lời giải Bài 3 Đề thi thử lên lớp 10 môn toán lần 1 năm 2017 của trường THPT Lương Thế Vinh
- Lời giải Bài 1, Bài 2 Đề thi thử lên lớp 10 môn toán lần 2 năm 2017 của trường THPT Lương Thế Vinh