Giải câu 26 Bài 3: Góc nội tiếp sgk Toán 9 tập 2 Trang 76
Câu 26: Trang 76 - SGK Toán 9 tập 2
Cho AB, BC, CA là ba dây của đường tròn (O). Từ điểm chính giữa M của cung AB vẽ dây MN song song với dây BC.Gọi giao điểm của MN và AC là S.Chứng minh SM = SC và SN = SA.
Bài làm:
M là điểm chính giữa cung AB (gt) => cung MA = cung MB.
MN // BC => cung MB = cung NC (hai dây song song chắn 2 cung bằng nhau)
Suy ra: cung MA = cung NC (= cung MB)
=> = $\widehat{CMN}$ (định lý về góc nội tiếp chắn cung)
Vậy tam giác SMC là tam giác cân tại S, suy ra SM = SC.
Chứng minh tương tự, ta có tam giác SAN cân tại S => SN = SA
Xem thêm bài viết khác
- Giải câu 49 Bài: Luyện tập sgk Toán 9 tập 2 Trang 87
- Lời giải bài 55 Ôn tập chương 4 Đại số 9 Trang 63,64 SGK
- Giải câu 6 bài 2: Hệ hai phương trình bậc nhất hai ẩn sgk Toán đại 9 tập 2 Trang 11
- Giải câu 46 bài: Ôn tập chương 3 sgk Toán đại 9 tập 2 Trang 27
- Giải câu 44 bài: Ôn tập chương 3 sgk Toán đại 9 tập 2 Trang 27
- Đáp án câu 3 đề 3 kiểm tra học kì 2 Toán 9
- Giải câu 45 Bài 6: Cung chứa góc sgk Toán 9 tập 2 Trang 86
- Giải câu 1 Bài 1: Góc ở tâm. Số đo cung sgk Toán hình 9 tập 2 Trang 68
- Giải câu 25 bài 6: Hệ thức Vi ét và ứng dụng sgk Toán đại 9 tập 2 Trang 52
- Giải câu 1 bài 1: Hàm số y=ax^2 ( a ≠ 0) sgk Toán đại 9 tập 2 Trang 30
- Giải câu 3 Bài 1: Hình trụ Diện tích xung quanh và thể tích của hình trụ sgk Toán 9 tập 2 Trang 110
- Giải câu 82 Bài 10: Diện tích hình tròn, hình quạt tròn sgk Toán 9 tập 2 Trang 99