-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải Câu 67 Bài Ôn tập chương 3 Phần Bài tập sgk Toán 7 tập 2 Trang 87
Câu 67: Trang 87 - SGK Toán 7 tập 2
Cho tam giác MNP với trung tuyến MR và trọng tâm Q.
a) Tính tỉ số các diện tích của hai tam giác MNP và RPQ.
b) Tính tỉ số các diện tích của hai tam giác MNQ và RNQ.
c) So sánh các diện tích của hai tam giác RPQ và RNQ.
Từ kết quả trên, hãy chứng minh các tam giác QMN, QNP, QPM có cùng diện tích.
Gợi ý: Hai tam giác ở mỗi câu a, b, c có chung đường cao.
Bài làm:
a) Vẽ
Vậy tam giác và
Vì là trọng tâm của
Ta có:
và
Suy ra
b) Vẽ
Vậy là đường cao của
Vì là trọng tâm của
Ta có:
và
Suy ra
c) Xét hai tam giác vuông và
(đối đỉnh)
(cạnh huyền - góc nhọn)
(cạnh tương ứng)
Ta có:
Vậy: (đpcm)
- Từ kết quả câu a) ta có:
(do câu c) (*)
- Từ kết quả câu b) ta có:
(**)
Từ (*) và (**) suy ra:
(đpcm)
Xem thêm bài viết khác
- Giải Câu 20 Bài 3: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác sgk Toán 7 tập 2 Trang 64
- Giải Câu 4 Bài Ôn tập chương 3 Phần Câu hỏi sgk Toán 7 tập 2 Trang 86
- Giải câu 38 bài luyện tập sgk Toán 7 tập 2 trang 41
- Giải Câu 57 Bài 8: Tính chất ba đường trung trực của tam giác sgk Toán 7 tập 2 Trang 80
- Giải câu 20 bài Luyện tập sgk Toán 7 tập 2 trang 36
- Giải Câu 37 Bài 6: Tính chất ba đường phân giác của tam giác sgk Toán 7 tập 2 Trang 72
- Giải câu 13 bài Luyện tập sgk Toán 7 tập 2 trang 15
- Giải câu 41 bài 7: Đa thức một biến sgk Toán 7 tập 2 trang 43
- Giải câu 9 bài 2: Giá trị của một biểu thức đại số sgk Toán 7 tập 2 trang 29
- Giải câu 58 bài Ôn tập chương 4 sgk Toán 7 tập 2 trang 49
- Giải bài 5: Đa thức sgk Toán 7 tập 2 trang 36
- Giải bài 8: Cộng, trừ đa thức một biến sgk Toán 7 tập 2 trang 44