Dạng 2: Tìm điều kiện của tham số để hàm số bậc 3 đồng biến trên tập số thực.
Dạng 2: Cho hàm số
. Tìm điều kiện của tham số để hàm số đồng biến trên $ \mathbb{R}$.
Bài làm:
I. Phương pháp giải:
đồng biến trên $ \mathbb{R}$ khi và chỉ khi $y'\geq 0, \forall x\in \mathbb{R}$.
Điều trên tương đương với
![]()
II. Bài tập áp dụng
Bài tập 1: Hàm số
với $m$ là tham số. Có bao nhiêu giá trị nguyên của $m$ để hàm số nghịch biến trên $ \mathbb{R}$?
Bài giải:
Ta có
là tam thức bậc hai có $\Delta ^{'}=m^2+12m+27$.
Hàm số nghịch biến trên
khi và chỉ khi $y^{'}\leq 0, \forall x\in \mathbb{R}$, tức là:
.
Vậy số giá trị nguyên của
thỏa mãn là $7$.
Bài tập 2: Có bao nhiêu giá trị nguyên của
để hàm số $y=(m^2-1)x^3+(m-1)mx^2-x+4$ nghịch biến trên $ \mathbb{R}$?
Bài giải:
Ta thấy, điều kiện cần để hàm số trên nghịch biến trên
là $m^2-1 \leq 0 $ $\Leftrightarrow$ m$\in$ {-1;0;1}.
, $y=-x^3-x^2-x+4$. Ta có, $y'=-3x^2-2x-1
Do đó, hàm số nghịch biến trên
, (thoả mãn).
, $y=-x+4$. Ta có, $y'=-1
Do đó, hàm số nghịch biến trên
, (thoả mãn).
, $y=-2x^2-x+4$.
Hàm số nghịch biến trên
, đồng biến trên $(-\infty;\frac{-1}{4})$, (không thoả mãn).
Vậy số giá trị nguyên của
thỏa mãn là $2$.
Xem thêm bài viết khác
- Tính giá trị biểu thức số phức
- Dạng 2: Tìm điều kiện của tham số để hàm số bậc 3 đồng biến trên tập số thực.
- Dạng 2: Giải bất phương trình mũ và lôgarit bằng phương pháp lôgarit hai vế
- Giải câu 3 bài: Ôn tập chương 2
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Giải bài 2: Hàm số lũy thừa
- Giải câu 1 bài: Bất phương trình mũ và lôgarit
- Giải câu 4 bài: Số phức
- Giải câu 1 bài: Cộng, trừ và nhân số phức
- Giải câu 1 bài 1: Sự đồng biến, nghịch biến của hàm số
- Giải câu 4 bài: Lôgarit
- Giải Bài 3: Lôgarit