Giải bài 7 Ôn tập cuối năm sgk Đại số 10 trang 160

  • 1 Đánh giá

Bài 7: trang 161 sgk Đại số 10

Chứng minh các hệ thức sau:

a)

b)

c)

d)

Bài làm:

a)

\(\eqalign{
& {{1 - 2{{\sin }^2}a} \over {1 + \sin 2a}} = {{{{\cos }^2}a - {{\sin }^2}a} \over {{{\cos }^2}a + {{\sin }^2}a + 2\sin a\cos a}} \cr
& = {{\cos a - \sin a} \over {\cos a + \sin a}} = {{1 - {{\sin a} \over {\cos a}}} \over {1 + {{\sin a} \over {\cos a}}}} \cr
& = {{1 - \tan a} \over {1 + \tan a}} \cr} \)

b)

\(\eqalign{
& {{\sin a + \sin 3a + \sin 5a} \over {\cos a + \cos 3a + \cos 5a}} \cr
& = {{2\sin {{a + 5a} \over 2}\cos {{5a - a} \over 2} + \sin 3a} \over {2\cos {{a + 5a} \over 2}\cos {{5a - a} \over 2} + \cos 3a}} = {{\sin 3a(1 + 2\cos 2a)} \over {\cos 3a(1 + 2\cos 2a)}} \cr
& = \tan 3a \cr} \)

c)

\(\eqalign{
& {{{{\sin }^4}a - {{\cos }^4}a + {{\cos }^2}a} \over {2(1 - \cos a)}} = {{({{\sin }^2}a + {{\cos }^2}a)({{\sin }^2}a - {{\cos }^2}a) + {{\cos }^2}a} \over {2(1 - \cos a)}} \cr
& = {{{{\sin }^2}a - {{\cos }^2}a + {{\cos }^2}a} \over {4{{\sin }^2}{a \over 2}}} = {{4{{\sin }^2}{a \over 2}{{\cos }^2}{a \over 2}} \over {4{{\sin }^2}{a \over 2}}} \cr
& = {\cos ^2}{a \over 2} \cr} \)

d)

\(\eqalign{
& {{\tan 2x\tan x} \over {\tan 2x - \tan x}} \cr
& = {{{{2\tan x} \over {1 - {{\tan }^2}x}}.\tan x} \over {{{2\tan x} \over {1 - {{\tan }^2}x}} - \tan x}} = {{2\tan x} \over {{{\tan }^2}x + 1}} \cr
& = \sin 2x \cr} \)

  • 3 lượt xem
Cập nhật: 07/09/2021