Giải câu 7 bài: Ôn tập chương II
Câu 7: Trang 50 - sgk đại số 10
Xác định tọa độ giao điểm của parabol
với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt, tại mỗi điểm và viết tọa độ của các giao điểm trong mỗi trường hợp.
Bài làm:
Trục tung có phương trình x = 0. Tọa độ giao điểm của parabol với trục tung là nghiệm của hệ phương trình:
![]()
=> ![]()
Vậy tọa độ giao điểm của parabol với trục tung là B(0; c).
Hoành độ giao điểm của parabol và trục hoành là nghiệm của phương trình:
(1)
Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt.
=> ![]()
=> Tọa độ hai giao điểm là:
và $A_{2}=(\frac{-b+\sqrt{\Delta }}{2a};0)$
Xem thêm bài viết khác
- Giải câu 4 bài 3: Các phép toán tập hợp
- Giải câu 10 bài ôn tập chương 4: Bất đẳng thức, bất phương trình sgk Đại số 10 trang 107
- Giải câu 3 bài 2: Tập hợp
- Giải câu 2 bài 5: Số gần đúng. Sai số
- Giải câu 12 bài: Ôn tập chương II
- Giải câu 5 bài Ôn tập cuối năm sgk Đại số 10 trang 159
- Giải câu 13 bài Ôn tập chương 6 sgk Đại số 10 trang 157
- Giải câu 4 bài 1: Cung và góc lượng giác – sgk Đại số 10 trang 140
- Giải bài 5 Ôn tập cuối năm sgk Đại số 10 trang 160
- Giải bài 2: Giá trị lượng giác của một cung – sgk Đại số 10 trang 141
- Giải câu 1 bài 3: Số trung bình cộng, số trung vị, mốt – sgk Đại số 10 trang 122
- Giải câu 11 bài: Ôn tập chương I