-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Dạng 1: So sánh các luỹ thừa hay căn số
Phần tham khảo mở rộng
Dạng 1: So sánh các luỹ thừa, căn số
Bài làm:
I. Phương pháp giải:
- So sánh hai luỹ thừa cùng cơ số a.
2. So sánh hai luỹ thừa có cùng số mũ.
- Với a, b # 1và
tương đương $\left\{\begin{matrix}x>0 \Leftrightarrow b^xa^x\end{matrix}\right.$
3. Với các biểu thức chứa căn, ta cần đưa về các căn cùng bậc.
II. Bài tập áp dụng
Bài tập 1: So sánh
a)
và $2003^{15}$
b)
và $11^{21}$
Bài giải: a) Ta có
Vậy
.
b) Ta có
Vậy
.
Bài tập 2: So sánh
a)
và $\sqrt{35}$
b)
và 2
Bài giải:
a) Ta có ![]()
Mà
.
Vậy
> $\sqrt{35}$.
b) Ta có
< $\sqrt{1+\sqrt{2+\sqrt{4}}}$ = $\sqrt{1+\sqrt{2+2}} = \sqrt{1+2}$=$\sqrt{3}.$
Mà
.
Vậy
< 2.
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải câu 1 bài: Hàm số mũ. Hàm số Lôgarit
- Dạng 2: Giải phương trình mũ và lôgarit bằng phương pháp lôgarit hai vế
- Giải bài 6: Bất phương trình mũ và lôgarit
- Giải câu 2 bài 4: Đường tiệm cận
- Giải câu 5 bài: Phương trình bậc hai với hệ số thực
- Giải câu 2 bài: Ôn tập chương 2
- Dạng 3: Giải phương trình mũ và lôgarit bằng phương pháp hàm số
- Giải câu 3 bài: Lôgarit
- Giải câu 5 bài: Tích phân
- Dạng 2: Dùng tính đơn điệu để chứng minh bất đẳng thức chứa mũ và lôgarit
- Giải câu 7 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Dạng 2: Bài toán lãi kép sử dụng lôgarit