Đáp án câu 5 đề 3 kiểm tra học kì 2 toán 7
Câu 5: Cho tam giác ABC cân tại A (AB>BC), hai đường cao BD và CE cắt nhau tại H. Chứng minh:
a. ![]()
b. AH là đường trung trực của đoạn BC
c. DE và BC song song với nhau
d. AH > CH
Bài làm:
Câu 5:

a. Xét
và $\bigtriangleup ACE$ có:
AB = AC (gt)
chung
Do đó
( cạnh huyền- góc nhọn)
b. BD và CE là hai đường cao của tam giác ABC (gt) mà BD cắt CE tại H nên H là trực tâm
Mặt khác
là tam giác cân tại A (gt) nên đường cao AH cũng đồng thời là đường trung trực của BC
c. Ta có
(cmt) => AD=AE
Do đó
cân tại A.
Ta có
(1)
Tương tự
cân tại A có $\widehat{ACB}=\widehat{ABC}=\frac{180^{\circ}-\widehat{A}}{2}$ (2)
Từ (1) và (2) => ED // BC (cặp góc đồng vị bằng nhau)
d. Ta có AB> BC (gt) => AD> CD (quan hệ đường xiên hình chiếu)
=> AH>CH
Xem thêm bài viết khác
- Toán 7: Đề kiểm tra học kì 2 (Đề 4)
- Giải câu 10 bài 3: Biểu đồ sgk Toán 7 tập 2 trang 14
- Giải câu 2 bài 1: Khái niệm về biểu thức đại số sgk Toán 7 tập 2 trang 26
- Giải Câu 7 Bài 1: Quan hệ giữa góc và cạnh đối diện trong một tam giác sgk Toán 7 tập 2 Trang 56
- Giải bài 3: Đơn thức sgk Toán 7 tập 2 trang 30
- Giải bài 7: Đa thức một biến sgk Toán 7 tập 2 trang 41
- Giải Câu 7 Bài Ôn tập chương 3 Phần Câu hỏi sgk Toán 7 tập 2 Trang 87
- Giải câu 17 bài 4: Đơn thức đồng dạng sgk Toán 7 tập 2 trang 35
- Đáp án câu 1 đề 3 kiểm tra học kì 2 toán 7
- Giải Bài 6: Tính chất ba đường phân giác của tam giác sgk Toán 7 tập 2 Trang 71
- Giải Câu 3 Bài Ôn tập chương 3 Phần Câu hỏi sgk Toán 7 tập 2 Trang 86
- Giải Câu 57 Bài 8: Tính chất ba đường trung trực của tam giác sgk Toán 7 tập 2 Trang 80