Đường thẳng đi qua các điểm cực trị

  • 1 Đánh giá

Dạng 5: Cho hàm số (C). Giả sử hàm số có hai điểm cực trị, gọi d là đường thẳng đi qua các điểm cực trị của (C). Ta xét một số câu hỏi liên quan đến đường thẳng d, chẳng hạn:

  • Nhận dạng đường thẳng nào là đường thẳng d;
  • Tìm điểm thuộc đường thẳng d.

Bài làm:

I.Phương pháp giải

Để giải quyết những bài toán dạng này, ta cần nắm được (xem lại điểm cực trị của đồ thị hàm bậc ba):

  • Cách lập phương trình đường thẳng d;
  • Một số tính chất của đường thẳng d.

Chú ý:

Hàm số bậc ba .

Chia cho $f(x)^{'}$ ta được: = $Q(x)$.$f(x)^{'}$ + Ax + B.

Khi đó nếu là hai điểm cực trị thì:$y_{1} = f_{1} = Ax_{1} + B$. và $y_{2} = f_{2} = Ax_{2} + B$.

Suy ra các điểm nằm trên đường thẳng $y = Ax + B$.

II.Bài tập vận dụng

Bài tập 1: Cho hàm số . Viết phương trình đi qua hai điểm cực trị của hàm số đã cho.

Bài giải:

Ta có: .

Phương trình có $\Delta ^{'} = 9 > 0$, với mọi m $\Rightarrow $ đồ thị hàm số đã cho luôn có hai điểm cực trị $(x_{1}; y_{1}), (x_{2}; y_{2})$.

Chia cho $y^{'}$ ta được: $y = (\frac{1}{3}x-\frac{m}{3})y^{'} + 2x - m^{2} + m$.

Khi đó: ; $y_{2} = 2x_{2} - m^{2} + m$.

Vậy phương trình đường thẳng đi qua hai điểm cực trị của hàm số đã cho là: .

Bài tập 2: Cho hàm số . Với giá trị nào của m thì đồ thị hàm số đã cho có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x -2y - 5 = 0.

Bài giải:

Ta có: .

Hàm số có cực đại và cực tiểu có hai nghiệm phân biệt $\Leftrightarrow \Delta ^{'}=9-3m> 0\Leftrightarrow m< 3$.

Ta có: .

Do đó đường thẳng đi qua các điểm cực trị có phương trình: $y= (\frac{2}{3}m-2)x+\frac{1}{3}m$.

có hệ số góc là $k_{1}=\frac{2}{3}m-2$.

d: x -2y - 5 = 0 nên d có hệ số góc là $k_{2}=\frac{1}{2}$

Đồ thị hàm số đã cho có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x -2y - 5 = 0 nên .

.

Với m = 0 thì đồ thị hàm số đã cho có hai điểm cực trị là (0; 0) và (2; -4), nên trung điểm của chúng là I(1; -2).

Ta thấy I(1; -2) thuộc đường thẳng d: x -2y - 5 = 0 nên hai điểm cực trị của đồ thị hàm số đã cho đối xứng qua đường thẳng d.

Vậy m = 0.

  • 56 lượt xem
Cập nhật: 07/09/2021