Đường thẳng đi qua các điểm cực trị

  • 1 Đánh giá

Dạng 5: Cho hàm số (C). Giả sử hàm số có hai điểm cực trị, gọi d là đường thẳng đi qua các điểm cực trị của (C). Ta xét một số câu hỏi liên quan đến đường thẳng d, chẳng hạn:

  • Nhận dạng đường thẳng nào là đường thẳng d;
  • Tìm điểm thuộc đường thẳng d.

Bài làm:

I.Phương pháp giải

Để giải quyết những bài toán dạng này, ta cần nắm được (xem lại điểm cực trị của đồ thị hàm bậc ba):

  • Cách lập phương trình đường thẳng d;
  • Một số tính chất của đường thẳng d.

Chú ý:

Hàm số bậc ba .

Chia cho f(x) ta được: = Q(x).f(x) + Ax + B.

Khi đó nếu là hai điểm cực trị thì:y1=f1=Ax1+B. và y2=f2=Ax2+B.

Suy ra các điểm nằm trên đường thẳng y=Ax+B.

II.Bài tập vận dụng

Bài tập 1: Cho hàm số . Viết phương trình đi qua hai điểm cực trị của hàm số đã cho.

Bài giải:

Ta có: .

Phương trình Δ=9>0, với mọi m đồ thị hàm số đã cho luôn có hai điểm cực trị (x1;y1),(x2;y2).

Chia cho y ta được: y=(13xm3)y+2xm2+m.

Khi đó: ; y2=2x2m2+m.

Vậy phương trình đường thẳng đi qua hai điểm cực trị của hàm số đã cho là: .

Bài tập 2: Cho hàm số . Với giá trị nào của m thì đồ thị hàm số đã cho có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x -2y - 5 = 0.

Bài giải:

Ta có: .

Hàm số có cực đại và cực tiểu có hai nghiệm phân biệt Δ=93m>0m<3.

Ta có: .

Do đó đường thẳng đi qua các điểm cực trị có phương trình: y=(23m2)x+13m.

có hệ số góc là k1=23m2.

d: x -2y - 5 = 0 nên d có hệ số góc là k2=12

Đồ thị hàm số đã cho có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng d: x -2y - 5 = 0 nên .

.

Với m = 0 thì đồ thị hàm số đã cho có hai điểm cực trị là (0; 0) và (2; -4), nên trung điểm của chúng là I(1; -2).

Ta thấy I(1; -2) thuộc đường thẳng d: x -2y - 5 = 0 nên hai điểm cực trị của đồ thị hàm số đã cho đối xứng qua đường thẳng d.

Vậy m = 0.

  • 56 lượt xem
Cập nhật: 07/09/2021
Chia sẻ
Chia sẻ FacebookChia sẻ ZaloChia sẻ Twitter
Đóng