Giải Câu 10 Bài Câu hỏi ôn tập chương 3

  • 1 Đánh giá

Câu 10: Trang 120 - SGK Hình học 11

Chứng minh rằng tập hợp các điểm cách đều ba đỉnh của một tam giác là đường vuông góc với mặt phẳng (ABC) và đi qua tâm đường tròn ngoại tiếp tam giác .

Bài làm:

Giải Câu 10 Bài Câu hỏi ôn tập chương 3

  • Lấy một điểm bất kì trong không gian sao cho MA=MB=MC. Từ kẻ MO vuông góc với (ABC). Các tam giác vuông MOA, MOB, MOC bằng nhau, suy ra OA=OB=OC.

Do đó là tâm đường tròn ngoại tiếp tam giác ABC. Vậy các điểm M cách đều ba đỉnh của tam giác ABC nằm trên đường thẳng d đi qua tâm của đường tròn ngoại tiếp tam giác ABC và vuông góc với mặt phẳng (ABC).

  • Ngược lại, lấy một điểm , với là đường thẳng qua tâm đường tròn ngoại tiếp tam giác ABC(ABC)

Nối ,

Do chung và OA=OB=OC nên các tam giác vuông MOA,MOB,MOC bằng nhau, suy ra MA=MB=MC,

Tức là điểm cách đều ba đỉnh A,B,C của tam giác ABC.

Kết luận: Tập hợp các điểm cách đều ba đỉnh của tam giác là đường thẳng vuông góc với mặt phẳng (ABC) và đi qua tâm đường tròn ngoại tiếp tam giác .

  • lượt xem
Cập nhật: 07/09/2021
Chia sẻ
Chia sẻ FacebookChia sẻ ZaloChia sẻ Twitter
Đóng