Giải câu 4 trang 106 toán VNEN 9 tập 1
Câu 4: Trang 106 sách VNEN 9 tập 1
Cho đường tròn tâm O đường kính DA = 2R, dây BC
OA tại M, gọi E là điểm đối xứng với A qua M.
a) Tức giác ACEB là hình gì? Vì sao?
b) Gọi K là giao của CE và BD. Chứng minh rằng K nằm trên đường tròn đường kính ED.
c) Nếu AM =
. Tính độ dài dây DB theo R.
Bài làm:
a) Tứ giác ACEB có BC
AE và BM = CM, ME = MA nên tứ giác ACEB là hình thoi
b) Ta có:
+ $\widehat{DAB}$ = $90^{\circ}$
Mặt khác:
= $\widehat{DEK}$ (đồng vị do CE // AB)
$\widehat{ADB}$ + $\widehat{DEK}$ = $90^{\circ}$ hay $\widehat{DKE}$ = $90^{\circ}$
Tam giác DKE có
= $90^{\circ}$ nên DE là cạnh huyền $\Rightarrow $ tam giác DKE là tam giác nội tiếp đường tròn có đường kính là ED hay K nằm trên đường tròn đường kính ED (đpcm).
c) Ta có: AM =
$\Rightarrow $ DM = $\frac{4R}{3}$
Áp dụng hệ thức lượng trong tam giác vuông DAB ta có:
= DM.DA = $\frac{4R}{3}$.2R = $\frac{4R^{2}}{3}$ $\Rightarrow $ DB = $\frac{2\sqrt{6}R}{3}$.
Xem thêm bài viết khác
- Giải câu 2 trang 100 toán VNEN 9 tập 1
- Giải câu 2 trang 82 toán VNEN 9 tập 1
- Giải câu 4 trang 38 toán VNEN 9 tập 1
- Giải câu 3 trang 14 sách toán VNEN lớp 9 tập 1
- Giải toán VNEN 9 bài 3: Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Giải toán VNEN 9 bài 4: Vị trí tương đối của đường thẳng và đường tròn. Tiếp tuyến của đường tròn
- Giải câu 3 trang 48 toán VNEN 9 tập 1
- Giải câu 3 trang 56 toán VNEN 9 tập 1
- Giải câu 3 trang 101 toán VNEN 9 tập 1
- Giải câu 3 trang 72 toán VNEN 9 tập 1
- Giải câu 6 trang 38 toán VNEN 9 tập 1
- Giải câu 4 trang 129 toán VNEN 9 tập 1