Giải câu 4 trang 64 toán VNEN 9 tập 1

  • 1 Đánh giá

Câu 4: Trang 64 sách VNEN 9 tập 1

Cho tam giác ABC vuông tại A có BC = 10cm, = $\frac{3}{4}$

a) Tính độ dài các cạnh AB, AC.

b) Các đường phân giác trong và ngoài của góc B cắt đường thẳng AC lần lượt tại M và N. Tính độ dài đoạn thẳng MN, MC

Hướng dẫn (h.28)

b) + Sử dụng tính chất đường phân giác = $\frac{MC}{BC}$ để tính MA, MC.

+ Chú ý rằng hai đường phân giác trong và ngoài của một góc thì vuông góc với nhau. Do đó BM BN. Áp dụng công thức $h^{2}$ = b'.c' cho tam giác vuông BMN thì $AB^{2}$ = AM.AN

Bài làm:

a) Theo bài ra ta có: = $\frac{3}{4}$ $\Leftrightarrow $ AB = $\frac{3}{4}$AC

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, ta có:

+ $AC^{2}$ = $BC^{2}$ $\Leftrightarrow $ $(\frac{3}{4}AC)^{2}$ + $AC^{2}$ = $10^{2}$ $\Leftrightarrow $ $\frac{25}{16}$$AC^{2}$ = 100 $\Leftrightarrow $ AC = 8cm.

AB = 6cm.

Vậy AB = 6cm, AC = 8cm.

b) * Theo tính chất đường phân giác, ta có: = $\frac{MC}{BC}$ = $\frac{AM + MC}{BA + BC}$ = $\frac{AC}{BA + BC}$ = $\frac{8}{6 + 10}$ = $\frac{1}{2}$

AM = $\frac{1}{2}$.BA = $\frac{1}{2}$.6 = 3cm

MC = .BC = .10 = 5cm.

* Ta có tính chất hai đường phân giác trong và ngoài của một góc thì vuông góc với nhau, do đó BM BN

Áp dụng công thức = b'.c' cho tam giác vuông BMN ta có:

= AM.AN $\Rightarrow $ AN = 12cm

Suy ra MN = AN + AM = 12 + 3 = 15cm

Vậy MC = 5cm, MN = 15cm.

  • 10 lượt xem
Cập nhật: 07/09/2021