Giải Câu 62 Bài 9: Tính chất ba đường cao của tam giác sgk Toán 7 tập 2 Trang 83
Câu 62: Trang 83 - SGK Toán 7 tập 2
Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Bài làm:

Hai đường cao bằng nhau
Vẽ
và $CK ⊥ AB$
Xét hai tam giác vuông KBC và HCB có:
Cạnh BC chung
![]()
![]()
![]()
Xét tam giác ABC, có:
hay $\widehat{ABC}=\widehat{ACB}$
Vậy tam giác ABC cân tại A (đpcm)
Ba đường cao bằng nhau
Từ a) ta có:
Nếu BH = CK thì ΔABC cân tại A => AB = AC (1)
Nếu AI = BH thì ΔABC cân tại C => CA = CB (2)
Từ (1) và (2) ta có: AB = BC = AC
Vậy ΔABC là tam giác đều.
Xem thêm bài viết khác
- Giải Câu 58 Bài 9: Tính chất ba đường cao của tam giác sgk Toán 7 tập 2 Trang 83
- Giải Câu 7 Bài 1: Quan hệ giữa góc và cạnh đối diện trong một tam giác sgk Toán 7 tập 2 Trang 56
- Giải Câu 17 Bài 3: Quan hệ giữa ba cạnh của một tam giác. Bất đẳng thức tam giác sgk Toán 7 tập 2 Trang 63
- Đáp án câu 4 đề 1 kiểm tra học kì 2 toán 7
- Giải Câu 6 Bài Ôn tập chương 3 Phần Câu hỏi sgk Toán 7 tập 2 Trang 87
- Giải Câu 3 Bài Ôn tập chương 3 Phần Câu hỏi sgk Toán 7 tập 2 Trang 86
- Đáp án câu 1 đề 3 kiểm tra học kì 2 toán 7
- Giải Câu 44 Bài 7: Tính chất đường trung trực của một đoạn thẳng sgk Toán 7 tập 2 Trang 76
- Đáp án câu 2 đề 9 kiểm tra học kì 2 toán 7
- Giải Câu 65 Bài Ôn tập chương 3 Phần Bài tập sgk Toán 7 tập 2 Trang 87
- Giải Câu 49 Bài 7: Tính chất đường trung trực của một đoạn thẳng sgk Toán 7 tập 2 Trang 77
- Giải câu 15 bài 4: Số trung bình cộng sgk Toán 7 tập 2 trang 20