Dạng 1: Tính diện tích hình phẳng giới hạn bởi hai đường y=f(x) và y=g(x).
Phần tham khảo mở rộng
Dạng 1: Tính diện tích hình phẳng giới hạn bởi hai đường y=f(x) và y=g(x).
Bài làm:
I.Phương pháp giải
Ta tìm hoành độ giao điểm của hai đường từ phương trình: f(x) - g(x) = 0.
Lập bảng xét dấu của hàm số f(x)-g(x) trên [a; b] trong đó a, b là nghiệm nhỏ nhất và lớn nhất của phương trình f(x) - g(x) = 0.
Dựa vào bảng xét dấu tính tích phân .
II.Bài tập vận dụng
Bài tập 1: Tính diện tích hình phẳng giới hạn bởi các đường thẳng .
Bài giải:
Ta đặt
Ta có: hoặc $x=2$
Dó đó diện tích cần tính là:
.
Bài tập 2: Tính diện tích các hình phẳng giới hạn bởi các đường .
Bài giải:
Đặt .
hoặc $x=2$ hoặc $x=3$.
Ta có bảng xét dấu:
Từ bảng xét dấu ta có diện tích cần tính là:
- $\int_{2}^{3}(x^3-6x^2+11x-6)dx$
Xem thêm bài viết khác
- Giải câu 3 bài: Phương trình bậc hai với hệ số thực
- Giải câu 9 bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 1)
- Giải câu 5 bài: Hàm số lũy thừa
- Dạng 1: Chứng minh đẳng thức chứa lôgarit
- Giải câu 3 bài: Phương trình mũ. Phương trình Lôgarit
- Toán 12: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 10)
- Giải câu 3 bài: Hàm số mũ. Hàm số Lôgarit
- Giải bài 4: Đường tiệm cận
- Giải câu 2 bài: Số phức
- Dạng 3: Xét dấu các hệ số của hàm bậc nhất trên bậc nhất, phân tích đồ thị hàm số.
- Giải câu 3 bài 2: Cực trị của hàm số