Giải câu 2 bài 3: Nhị thức Niu tơn
Câu 2: Trang 58 - sgk đại số và giải tích 11
Tìm hệ số của x3 trong khai triển của biểu thức: (x +
)6.
Bài làm:
Dựa vào nhị thức Niu - tơn ta có:
(x +
)6 =
Ck6 . x6 – k . (
)k =
Ck6. 2k . x6 – 3k
Trong tổng này, số hạng Ck6 . 2k . x6 – 3k có số mũ của x bằng 3 khi và chỉ khi
và $\leq k\leq 6$
![]()
Với k = 1 thì hệ số của x3 trong khai triển của biểu thức đã cho là: 2 . C16 = 2 . 6 = 12.
Xem thêm bài viết khác
- Giải câu 1 bài 3: Hàm số liên tục
- Giải câu 2 bài 1: Giới hạn của dãy số
- Giải câu 2 bài 3: Một số phương trình lượng giác thường gặp
- Phần câu hỏi Ôn tập cuối năm
- Giải câu 1 bài 4: Vi phân
- Giải câu 4 bài 3: Hàm số liên tục
- Giải câu 4 bài 3: Cấp số cộng
- Giải câu 2 bài 5: Đạo hàm cấp hai
- Giải bài 1 Ôn tập cuối năm
- Toán 11: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 5)
- Giải câu 17 bài Ôn tập cuối năm
- Giải câu 11 bài ôn tập chương 4: Giới hạn