-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Dạng 2: Dùng tính đơn điệu để chứng minh bất đẳng thức chứa mũ và lôgarit
Dạng 2: Dùng tính đơn điệu để chứng minh bất đẳng thức chứa mũ và lôgarit.
Chứng minh bất đẳng thức: tương tự cho $\leq ; \geq ;
Bài làm:
I. Phương pháp giải:
- Chuyển bất đẳng thức đã cho về dạng:
tương tự cho $\leq ; \geq ;
- Tìm tập xác định của hàm số y=h(x).
- Tính đạo hàm y'=h'(x), giải phương trình h'(x)=0.
- Lập bảng biến thiên. Từ đó suy ra được bất đẳng thức cần chứng minh.
II. Bài tập áp dụng
Bài tập 1: Chứng minh bất đẳng thức:
Bài giải: Ta có .
Xét hàm số với
Ta có
.
Ta có bảng biến thiên
Từ bảng biến thiên ta được
Vậy
Bài tập 2: Chứng minh
Bài giải: Xét hàm số với
Ta có: với
đồng biến trên
Vậy hay
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải bài 2: Hàm số lũy thừa
- Giải câu 3 bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Giải câu 3 bài: Lôgarit
- Dạng 1: Tính tích phân dùng phương pháp đồng nhất hệ số với phân thức có mẫu ở dạng tích
- Giải câu 10 bài: Ôn tập chương 4
- Dạng 3: Giải phương trình mũ và lôgarit bằng phương pháp hàm số
- Giải bài 2: Cực trị của hàm số
- Giải câu 5 bài: Cộng, trừ và nhân số phức
- Giải câu 3 bài: Tích phân
- Tìm tất cả những giá trị thực của tham số sao cho hàm số thỏa mãn một điều kiện nào đó về số lượng các điểm cực trị (cực đại, cực tiểu).
- Giải bài 3: Phép chia số phức
- Giải câu 5 bài 1: Sự đồng biến, nghịch biến của hàm số