Giải bài 12 Ôn tập cuối năm
Bài 12: trang 180 sgk toán Đại số và giải tích 11
Chứng minh rằng hàm số không có giới hạn khi \(x \rightarrow + ∞\)
Bài làm:
- Hàm số có tập xác định \(D = \mathbb R\)
- Chọn dãy số với \( x_n= n2 π\) (\(n\in {\mathbb N}^*\)).
Ta có:
- Chọn dãy số với \({x_n} = {\pi \over 2} + n2\pi (n \in {\mathbb N^*})\)
Ta có:
Từ hai kết quả trên, ta kết luận hàm số không có giới hạn khi \(x \rightarrow + ∞\)
Xem thêm bài viết khác
- Giải câu 8 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 2 bài 1: Quy tắc đếm
- Giải câu 3 bài 1: Phương pháp quy nạp toán học
- Giải câu 5 bài 2: Quy tắc tính đạo hàm
- Giải bài 1: Phương pháp quy nạp toán học
- Giải câu 1 bài 1: Phương pháp quy nạp toán học
- Giải câu 1 bài 2: Phương trình lượng giác cơ bản
- Giải bài 14 Ôn tập cuối năm
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm
- Giải câu 14 bài Ôn tập cuối năm
- Giải câu 2 bài 3: Một số phương trình lượng giác thường gặp
- Giải bài 3: Đạo hàm của hàm số lượng giác