Giải bài 12 Ôn tập cuối năm
Bài 12: trang 180 sgk toán Đại số và giải tích 11
Chứng minh rằng hàm số không có giới hạn khi \(x \rightarrow + ∞\)
Bài làm:
- Hàm số
có tập xác định \(D = \mathbb R\)
- Chọn dãy số
với \( x_n= n2 π\) (\(n\in {\mathbb N}^*\)).
Ta có:
- Chọn dãy số
với \({x_n} = {\pi \over 2} + n2\pi (n \in {\mathbb N^*})\)
Ta có:
Từ hai kết quả trên, ta kết luận hàm số không có giới hạn khi \(x \rightarrow + ∞\)
Xem thêm bài viết khác
- Giải câu 4 Bài 4: Phép thử và biến cố
- Giải câu 8 bài ôn tập chương 4: Giới hạn
- Giải bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 5 bài 3: Hàm số liên tục
- Giải bài 11 Ôn tập cuối năm
- Giải câu 6 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 4 bài 3: Cấp số cộng
- Giải câu 4 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 1 bài 2: Giới hạn của hàm số
- Toán 11: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 10)
- Giải câu 11 bài ôn tập chương 3: Dãy số, cấp số cộng và cấp số nhân
- Giải câu 4 bài 2: Giới hạn của hàm số