-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải câu 4 bài: Khái niệm về khối đa diện
Bài 4 :Trang 12-sgk hình học12
Chia một khối lập phương thành sáu khối tứ diện bằng nhau.
Bài làm:
Trước hết, ta chia khối lập phương thành hai khối lăng trụ bằng nhau ABD.A'B'D' và BCD.B'C'D' vì chúng đối xứng qua mặt phẳng (BDD'B').
Trong lăng trụ ABD.A'B'D' ta xét ba khối lăng trụ D'A'AB, D'A'B'B, D'ABD ta có: D'A'AB và D'A'B'B bằng nhau vì đối xứng qua mặt phẳng (A'D'C'B).
D'S'AB và D'ADB bằng nhau vì đối xứng qua (ABC'D').
Tương tự, ta cũng chia hình lăng trụ BCD.B'C'D' thành 3 khối tứ diện D'B'BC, D'B'C'C, D'BDC. Các khối tứ diện này bằng nhau và bằng ba khối tứ diện trên.
Cập nhật: 07/09/2021
Xem thêm bài viết khác
- Giải câu 12 bài: Ôn tập chương I: Khối đa diện
- Giải câu 6 bài: Mặt cầu
- Giải câu 5 bài: Phương trình mặt phẳng
- Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
- Giải câu 2 bài: Khối đa diện lồi và khối đa diện đều
- Giải câu 6 bài: Phương trình mặt phẳng
- Giải câu 10 bài: Mặt cầu
- Giải câu 7 bài: Phương trình mặt phẳng
- Giải câu 2 bài: Phương trình đường thẳng trong không gian
- Giải câu 9 bài: Phương trình đường thẳng trong không gian
- Giải bài 2: Phương trình mặt phẳng
- Giải câu 10 bài: Phương trình đường thẳng trong không gian