-
Tất cả
- Tài liệu hay
- Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
- Tiếng Anh
- Vật Lý
- Hóa Học
- Sinh Học
- Lịch Sử
- Địa Lý
- GDCD
- Khoa Học Tự Nhiên
- Khoa Học Xã Hội
Giải bài 2: Phương trình mặt phẳng
Bài học với nội dung: Phương trình mặt phẳng. Một kiến thức mới đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, KhoaHoc sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn
A. Tổng hợp kiến thức
I. Phương trình mặt phẳng
Cho mp(), nếu $\overrightarrow{n}\neq 0$ và có giá vuông góc với mp() thì $\overrightarrow{n}$ là vectơ pháp tuyến của .
- Nếu là vectơ pháp tuyến một mặt phẳng thì $k\overrightarrow{n}$ cũng là vectơ pháp tuyến của mặt phẳng đó.
- được xác định bởi tích vô hướng của $\overrightarrow{a}$ và $\overrightarrow{b}$
- Ký hiệu: hay $\overrightarrow{n}=[\overrightarrow{a};\overrightarrow{b}]$
- Phương trình tổng quát của mặt phẳng:
với $A,B,C\neq 0$. |
- Nếu => ta có phương trình của mặt phẳng theo đoạn chắn:
II. Điều kiện hai mặt phẳng song song, vuông góc
1. Điều kiện hai mặt phẳng song song
- cắt $(\alpha _{2})$ <=> $\overrightarrow{n_{1}}\neq k\overrightarrow{n_{2}}<=>(A_{1};B_{1};C_{1})\neq k(A_{2};B_{2};C_{2}) $
2. Điều kiện hai mặt phẳng vuông góc
III. Khoảng cách từ một điểm đến một mặt phẳng
Định lí
- Trong không gian Oxyz, cho mp( có phương trình $Ax+By+Cz+D=0$ và điểm $M_{0}(x_{0};y_{0};z_{0})$. Khoảng cách từ M đến mp( xác định bởi công thức:
B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI
Kiến thức thú vị
Câu 1: Trang 80 - sgk hình học 12
Viết phương trình mặt phẳng:
a) Đi qua điểm M(1; -2; 4) và nhận làm vectơ pháp tuyến.
b) Đi qua điểm A(0 ; -1 ; 2) và song song với giá của các vectơ và $\overrightarrow{u}=(-3;0;1)$
c) Đi qua ba điểm A(-3 ; 0 ; 0), B(0 ; -2 ; 0) và C(0 ; 0 ; -1).
Câu 2: Trang 80 - sgk hình học 12
Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với A(2; 3; 7), B(4; 1; 3).
Câu 3: Trang 80 - sgk hình học 12
a) Lập phương trình của các mặt phẳng tọa độ Oxy, Oyz và Ozx
b) Lập phương trình của các mặt phẳng đi qua điểm M(2; 6; -3) và lần lượt song song với các mặt phẳng tọa độ.
Câu 4: Trang 80 - sgk hình học 12
Lập phương trình mặt phẳng:
a) Chứa trục Ox và điểm P(4; -1; 2).
b) Chứa trục Oy và điểm Q(1; 4; -3).
c) Chứa trục Oz và điểm R(3; -4; 7).
Câu 5: Trang 80 - sgk hình học 12
Cho tứ diện có các đỉnh là A(5; 1; 3), B(1; 6; 2), C(5; 0; 4), D(4; 0; 6)
a) Hãy viết phương trình của các mặt phẳng (ACD) và (BCD).
b) Hãy viết phương trình mặt phẳng () đi qua cạnh AB và song song với cạnh CD.
Câu 6: Trang 80 - sgk hình học 12
Hãy viết phương trình mặt phẳng () đi qua điểm M(2; -1; 2) và song song với mặt phẳng ($\beta$) : $2x – y + 3z + 4 = 0$.
Câu 7: Trang 80 - sgk hình học 12
Lập phương trình mặt phẳng () qua hai điểm A(1; 0; 1), B(5; 2; 3) và vuông góc với mặt phẳng ($\beta$): $2x – y + z – 7 = 0$.
Câu 8: Trang 80 - sgk hình học 12
Xác định các giá trị của m và n để mỗi cặp mặt phẳng sau đây là một cặp mặt phẳng song song với nhau;
a) và $nx – 8y – 6z + 2 =0$
b) và $2x + ny – 3z + 1 = 0$
Câu 9: Trang 81 - sgk hình học 12
Tính khoảng cách từ điểm A(2; 4; -3) lần lượt đến các mặt phẳng sau:
a)
b)
c)
Câu 10: Trang 81 - sgk hình học 12
Giải bài toán sau đây bằng phương pháp tọa độ:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1.
a) Chứng minh hai mặt phẳng (AB'D') và (BC'D) song song.
b) Tính khoảng cách giữa hai mặt phẳng nói trên.
Phần tham khảo mở rộng
Dạng 1: Phương trình mặt phẳng (P) đi qua 1 điểm và biết VTPT hoặc cặp VTCP
Dạng 2: VIết phương trình mặt phẳng (P) đi qua một điểm M và song song với mặt phẳng (Q).
Dạng 3: Viết phương trình mặt phẳng (P) đi qua hai điểm và vuông góc với mặt phẳng (Q).
Dạng 4: Vị trí tương đối của hai mặt phẳng
- Toán 12 Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Lôgarit
- Chương 3: Nguyên hàm. Tích phân và ứng dụng
- Chương 4: Số phức
-
Chuyên đề ôn tập Toán 12
- Ôn tập thi THPT quốc gia môn Toán chuyên đề SỐ PHỨC
- Một số công thức và phương pháp tính nhanh trắc nghiệm- Chuyên đề HÀM SỐ
- Thơ hay để nhớ công thức tính đạo hàm của hàm số
- Chuyên đề một số công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp
- Một số phương pháp để học tốt hình học không gian
- Phát triển từ đề thi minh họa THPT Quốc gia lần 3 môn Toán
- Chuyên đề đồ thị hàm số chứa dấu trị tuyệt đối
- Hình học 12
- Chương 1: Khối đa diện
- Chương 2: Mặt nón. Mặt trụ. Mặt cầu
- Chương 3: Phương pháp tọa độ trong không gian
-
Đề luyện thi 12
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT chuyên- ĐH Vinh lần 3
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT chuyên Thái Bình lần 4
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT Hà Huy Tập lần 1
- Đề thi thử THPT quốc gia môn toán năm 2017- Đề tham khảo số 3
- Đề thi khảo sát chất lượng môn toán năm 2017- Sở giáo dục đào tạo Thanh Hóa
- Đề thi minh họa THPT Quốc gia năm 2017 của Bộ Giáo dục và đào tạo lần 3
- Đề thi thử THPT quốc gia môn toán năm 2017 của GSTT
- Đề thi thử THPT quốc gia môn toán năm 2017- Đề tham khảo số 5