-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải bài 1: Nguyên hàm
Bài học với nội dung kiến thức về Nguyên hàm. Một kiến thức mới đòi hỏi các bạn học sinh cần nắm được lý thuyết để vận dụng giải quyết các bài toán. Dựa vào cấu trúc SGK toán lớp 12, KhoaHoc sẽ tóm tắt lại hệ thống lý thuyết và hướng dẫn giải các bài tập 1 cách chi tiết, dễ hiểu. Hi vọng rằng, đây sẽ là tài liệu hữu ích giúp các em học tập tốt hơn
A. Tổng hợp kiến thức
I. Nguyên hàm và tính chất
1. Nguyên hàm
- Cho hàm số f(x) xác định trên K.
- Hàm số F(x) được gọi là nguyên hàm của hàm f(x) trên K nếu F'(x) = f(x) với mọi
.
Định lí 1
- Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C , hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
Định lí 2
- Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
- Ký hiệu:
Biểu thức f(x)dx là vi phân của nguyên hàm F(x) của f(x).
2. Tính chất nguyên hàm
Tính chất 1
Tính chất 2
![]() |
Tính chất 3
![]() |
Chú ý: Sự tồn tại của nguyên hàm
- Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
3. Bảng nguyên hàm
II. Phương pháp tính nguyên hàm
1. Phương pháp đổi biến số
Định lí 1
- Nếu
và
là hàm số có đạo hàm liên tục thì
Hệ quả
![]() |
2. Phương pháp tính nguyên hàm từng phần
Định lí 2
- Nếu hai hàm số
và
có đạo hàm liên tục trên K thì:
![]() |
- Hay:
với
B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI
Kiến thức thú vị
Câu 1:Trang 100 - sgk giải tích 12
Trong các cặp hàm số dưới đây, hàm số nào là nguyên hàm của hàm số còn lại?
a) và
b) và
c) và
Câu 2:Trang 100 - sgk giải tích 12
Tìm nguyên hàm của các hàm số sau?
a)
b)
c)
d)
e)
g)
h)
Câu 3: Trang 101 - sgk giải tích 12
Sử dụng phương pháp biến số, hãy tính:
a) đặt
b) đặt
c) đặt t=\cos x$
d) đặt
Câu 4: Trang 101 - sgk giải tích 12
Sử dụng phương pháp tính nguyên hàm từng phần, hãy tính:
a)
b)
c)
d)
-
Sơ đồ tư duy bài 16 Lịch sử 12: Phong trào giải phóng dân tộc và tổng khởi nghĩa tháng Tám Sơ đồ tư duy Lịch sử 12 bài 16
-
Sơ đồ tư duy bài 13 Lịch sử 12: Phong trào dân tộc dân chủ ở Việt Nam từ năm 1925 đến năm 1930 Sơ đồ tư duy Lịch sử 12
-
Đáp án Cuộc thi “Tự hào Việt Nam” năm 2022 - Tuần 4 Câu hỏi và đáp án cuộc thi Tự hào Việt Nam các tuần
-
Sơ đồ tư duy bài 17 Lịch sử 12: Nước Việt Nam dân chủ cộng hòa Sơ đồ tư duy Lịch sử 12 bài 17
-
Hoàn cảnh ra đời Hồn Trương Ba da hàng thịt Tác phẩm Hồn Trương Ba da hàng thịt
-
Sơ đồ tư duy bài 1 Lịch sử 12: Sự hình thành trật tự thế giới mới sau chiến tranh thế giới thứ 2 (1945-1949) Sơ đồ tư duy Lịch sử 12 bài 1
- Toán 12 Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Lôgarit
- Chương 3: Nguyên hàm. Tích phân và ứng dụng
- Chương 4: Số phức
- Chuyên đề ôn tập Toán 12
- Ôn tập thi THPT quốc gia môn Toán chuyên đề SỐ PHỨC
- Một số công thức và phương pháp tính nhanh trắc nghiệm- Chuyên đề HÀM SỐ
- Thơ hay để nhớ công thức tính đạo hàm của hàm số
- Chuyên đề một số công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp
- Một số phương pháp để học tốt hình học không gian
- Phát triển từ đề thi minh họa THPT Quốc gia lần 3 môn Toán
- Chuyên đề đồ thị hàm số chứa dấu trị tuyệt đối
- Hình học 12
- Chương 1: Khối đa diện
- Chương 2: Mặt nón. Mặt trụ. Mặt cầu
- Chương 3: Phương pháp tọa độ trong không gian
- Đề luyện thi 12
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT chuyên- ĐH Vinh lần 3
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT chuyên Thái Bình lần 4
- Đề thi thử THPT quốc gia môn toán năm 2017 của trường THPT Hà Huy Tập lần 1
- Đề thi thử THPT quốc gia môn toán năm 2017- Đề tham khảo số 3
- Đề thi khảo sát chất lượng môn toán năm 2017- Sở giáo dục đào tạo Thanh Hóa
- Đề thi minh họa THPT Quốc gia năm 2017 của Bộ Giáo dục và đào tạo lần 3
- Đề thi thử THPT quốc gia môn toán năm 2017 của GSTT
- Đề thi thử THPT quốc gia môn toán năm 2017- Đề tham khảo số 5
- Không tìm thấy