Giải câu 49 bài: Luyện tập sgk Toán 8 tập 1 Trang 93
Câu 49 : Trang 93 sgk toán 8 tập 1
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng:
a) AI // CK
b) DM = MN = NB
Bài làm:
Theo giả thiết ta có hình vẽ sau:
a) Do ABCD là hình bình hành, mà I, K lần lượt là trung điểm của AB và DC
=> AK = KB = DI = DC
Mà AK // IC (do AB // DC)
=>Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành.
Do đó AI // CK (Đpcm)
b) Xét ∆DCN có DI = IC và IM // CN.
=>MI là đường trung bình của ∆DCN
=>M là trung điểm của DN =>DM = MN
Chứng minh tương tự đối với ∆ABM ta có MN = NB.
Vậy DM = MN = NB (đpcm)
Xem thêm bài viết khác
- Giải câu 57 bài: Luyện tập sgk Toán 8 tập 1 Trang 96
- Giải câu 50 bài 9: Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức sgk Toán 8 tập 1 Trang 58
- Giải câu 40 bài 7: Phép nhân các phân thức đại số sgk Toán 8 tập 1 Trang 53
- Giải câu 80 bài: Ôn tập chương 1 sgk Toán Đại 8 tập 1 Trang 33
- Giải câu 18 bài: Luyện tập sgk Toán 8 tập 1 Trang 43
- Giải câu 58 bài 9: Hình chữ nhật sgk Toán hình 8 tập 1 Trang 99
- Giải câu 4 bài 1: Tứ giác sgk Toán Hình 8 tập 1 Trang 67
- Giải câu 33 bài: Luyện tập sgk Toán 8 tập 1 Trang 83
- Giải câu 80 bài 12: Hình vuông sgk Toán hình 8 tập 1 Trang 108
- Giải toán 8 tập 1 trang 58 sgk: câu 53 Biến đổi mỗi biểu thức sau thành một phân thức đại số
- Giải câu 43 bài 8: Phép chia các phân thức đại số sgk Toán 8 tập 1 Trang 54
- Giải câu 35 bài 6: Đối xứng trục sgk Toán hình 8 tập 1 Trang 87