Giải câu 49 bài: Luyện tập sgk Toán 8 tập 1 Trang 93
Câu 49 : Trang 93 sgk toán 8 tập 1
Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng:
a) AI // CK
b) DM = MN = NB
Bài làm:
Theo giả thiết ta có hình vẽ sau:

a) Do ABCD là hình bình hành, mà I, K lần lượt là trung điểm của AB và DC
=> AK = KB = DI = DC
Mà AK // IC (do AB // DC)
=>Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành.
Do đó AI // CK (Đpcm)
b) Xét ∆DCN có DI = IC và IM // CN.
=>MI là đường trung bình của ∆DCN
=>M là trung điểm của DN =>DM = MN
Chứng minh tương tự đối với ∆ABM ta có MN = NB.
Vậy DM = MN = NB (đpcm)
Xem thêm bài viết khác
- Giải câu 70 bài 12: Chia đa thức một biến đã sắp xếp sgk Toán 8 tập 1 Trang 32
- Giải câu 30 bài 5: Những hằng đẳng thức đáng nhớ (tiếp) sgk Toán đại 8 tập 1 Trang 16
- Giải câu 7 bài 2: Hình thang sgk Toán Hình 8 tập 1 Trang 71
- Giải câu 37 bài 6: Đối xứng trục sgk Toán hình 8 tập 1 Trang 87
- Giải câu 74 bài 11: Hình thoi sgk Toán hình 8 tập 1 Trang 106
- Giải câu 54 bài: Luyện tập sgk Toán 8 tập 1 Trang 96
- Giải bài: Ôn tập chương II Phân thức đại số sgk Toán 8 tập 1 Trang 60 62
- Giải bài: Ôn tập chương I Tứ giác sgk Toán hình 8 tập 1 Trang 110 112
- Giải câu 4 bài 1: Nhân đơn thức với đa thức sgk Toán đại 8 tập 1 Trang 5
- Giải câu 16 bài 4: Quy đồng mẫu thức sgk Toán 8 tập 1 Trang 43
- Giải câu 82 bài 12: Hình vuông sgk Toán hình 8 tập 1 Trang 108
- Giải bài 5: Dựng hình bằng thước và compa. Dựng hình thang sgk Toán 8 tập 1 Trang 81 83