Giải Bài: Bài tập ôn tập chương 3
Để củng cố về khái niệm và kiến thức về vecto và quan hệ vuông góc trong không gian, KhoaHoc xin chia sẻ với các bạn bài: Bài tập Ôn tập chương 3 thuộc phần hình học lớp 11. Với câu hỏi và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu hữu ích giúp các bạn học tập tốt hơn.
A. CÂU HỎI
Câu 1: Trang 121 - SGK Hình học 11
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song
c) Mặt phẳng
vuông góc với đường thẳng \(b\) mà \(b\) vuông góc với đường thẳng \(a\), thì \(a\) song song với ![]()
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Câu 2: Trang 121 - SGK Hình học 11
Trong các khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Câu 3: Trang 121 - SGK Hình học 11
Cho hình chóp
có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh \(SA\) bằng \(a\) và vuông góc với mặt phẳng \((ABCD)\).
a) Chứng minh rằng bốn mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng
đi qua \(A\) và vuông góc với cạnh \(SC\) lần lượt cắt \(SB, SC\) và \(SD\) tại \(B’, C’\) và \(D’\). Chứng minh \(B’D’\) song song với \(BD\) và \(AB’\) vuông góc với \(SB\).
Câu 4: Trang 121 - SGK Hình học 11
Hình chóp
có đáy \(ABCD\) là hình thoi cạnh \(a\) và có góc \(\widehat{ BAD} = 60^0\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO = {{3a} \over 4}\) . Gọi \(E\) là trung điểm của đoạn \(BC\) và \(F\) là trung điểm của đoạn \(BE\).
a) Chứng minh mặt phẳng
vuông góc với mặt phẳng \((SBC)\)
b) Tính các khoảng cách từ
và \(A\) đến mặt phẳng \((SBC)\)
Câu 5: Trang 121 - SGK Hình học 11
ứ diện
có hai mặt \(ABC\) và \(ADC\) nằm trong hai mặt phẳng vuông góc với nhau. Tam giác \(ABC\) vuông tại \(A\) có \(AB = a, AC = b\). Tam giác \(ADC\) vuông tại \(D\) có \(CD = a\).
a) Chứng minh các tam giác
và \(BDC\) đều là tam giác vuông
b) Gọi
và \(K\) lần lượt là trung điểm của \(AD\) và \(BC\). Chứng minh \(IK\) là đoạn vuông góc chung của hai đường thẳng \(AD\) và \(BC\).
Câu 6: Trang 122 - SGK Hình học 11
Cho khối lập phương ABCD.A'B'C'D' cạnh a.
a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)
b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.
Câu 7: Trang 122 - SGK Hình học 11
Cho hình chóp
có đáy hình hoi $ABCD$ cạnh $a$ có góc $\widehat{BAD}=60^0$ và $SA=SB=SD=\frac{a\sqrt{3}}{2}$
a) Tính khoảng cách từ
đến mặt phẳng $(ABCD)$ và độ dài cạnh $SC$.
b) Chứng minh mặt phẳng
vuông góc với mặt phẳng $(ABCD)$
c) Gọi
là góc giữa hai mặt phẳng $(SBD)$ và $(ABCD)$. Tính $tan\varphi $
B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI
Kiến thức thú vị
Câu 1: Trang 121 - SGK Hình học 11
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song
c) Mặt phẳng
vuông góc với đường thẳng \(b\) mà \(b\) vuông góc với đường thẳng \(a\), thì \(a\) song song với ![]()
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Câu 2: Trang 121 - SGK Hình học 11
Trong các khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Câu 3: Trang 121 - SGK Hình học 11
Hình chóp
có đáy là hình vuông \(ABCD\) cạnh \(a\), cạnh \(SA\) bằng \(a\) và vuông góc với mặt phẳng \((ABCD)\).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng
đi qua \(A\) và vuông góc với cạnh \(SC\) lần lượt cắt \(SB, SC\) và \(SD\) tại \(B’, C’\) và \(D’\). Chứng minh \(B’D’\) song song với \(BD\) và \(AB’\) vuông góc với \(SB\).
Câu 4: Trang 121 - SGK Hình học 11
Hình chóp
có đáy \(ABCD\) là hình thoi cạnh \(a\) và có góc \(\widehat{ BAD} = 60^0\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO = {{3a} \over 4}\) . Gọi \(E\) là trung điểm của đoạn \(BC\) và \(F\) là trung điểm của đoạn \(BE\).
a) Chứng minh mặt phẳng
vuông góc với mặt phẳng \((SBC)\)
b) Tính các khoảng cách từ
và \(A\) đến mặt phẳng \((SBC)\)
Câu 5: Trang 121 - SGK Hình học 11
Tứ diện
có hai mặt \(ABC\) và \(ADC\) nằm trong hai mặt phẳng vuông góc với nhau. Tam giác \(ABC\) vuông tại \(A\) có \(AB = a, AC = b\). Tam giác \(ADC\) vuông tại \(D\) có \(CD = a\).
a) Chứng minh các tam giác
và \(BDC\) đều là tam giác vuông
b) Gọi
và \(K\) lần lượt là trung điểm của \(AD\) và \(BC\). Chứng minh \(IK\) là đoạn vuông góc chung của hai đường thẳng \(AD\) và \(BC\).
Câu 6: Trang 122 - SGK Hình học 11
Cho khối lập phương ABCD.A'B'C'D' cạnh a.
a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)
b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'
Câu 7: Trang 122 - SGK Hình học 11
Cho hình chóp
có đáy hình hoi $ABCD$ cạnh $a$ có góc $\widehat{BAD}=60^0$ và $SA=SB=SD=\frac{a\sqrt{3}}{2}$
a) Tính khoảng cách từ
đến mặt phẳng $(ABCD)$ và độ dài cạnh $SC$.
b) Chứng minh mặt phẳng
vuông góc với mặt phẳng $(ABCD)$
c) Gọi
là góc giữa hai mặt phẳng $(SBD)$ và $(ABCD)$. Tính $tan\varphi $
Xem thêm bài viết khác
- Giải bài: Ôn tập chương I - phép dời hình và phép đồng dạng trên mặt phẳng
- Giải Câu 6 Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải câu 3 bài 7: Phép vị tự
- Giải Câu 4 Bài 4: Hai mặt phẳng vuông góc
- Giải Câu 1 Bài 3: Đường thẳng vuông góc với mặt phẳng
- Giải câu 1 bài 2: Phép tịnh tiến
- Giải câu 4 bài: Ôn tập chương II
- Giải Bài 5: Khoảng cách
- Giải Câu 11 Bài Câu hỏi trắc nghiệm chương 3
- Giải Bài: Câu hỏi trắc nghiệm chương 3
- Giải Câu 1 Bài: Bài tập ôn tập chương 3
- Giải Câu 6 Bài 4: Hai mặt phẳng vuông góc