Giải câu 13 bài ôn tập chương 3: Dãy số, cấp số cộng và cấp số nhân
Câu 13: trang 108 sgk toán Đại số và giải tích 11
Chứng minh rằng nếu các số
lập thành một cấp số cộng \((abc ≠ 0)\)thì các số \({1 \over {b + c}},{1 \over {c + a}};{1 \over {a + b}}\)cũng lập thành một cấp số cộng.
Bài làm:
Ta phải chứng minh: ![]()
Biến đổi ta có:
![]()
![]()
![]()
![]()
![]()
![]()
Vậy
đúng vì \(a^2,b^2,c^2\) lập thành cấp số cộng.
Vậy
là cấp số cộng.
Xem thêm bài viết khác
- Giải câu 11 bài Ôn tập cuối năm
- Giải bài 5: Xác suất của biến cố
- Giải bài 10 Ôn tập cuối năm
- Giải câu 1 bài 4: Phép thử và biến cố
- Toán 11: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 2)
- Giải câu 2 bài 3: Hàm số liên tục
- Giải câu 3 bài 3: Một số phương trình lượng giác thường gặp
- Giải câu 5 bài 1: Hàm số lượng giác
- Giải câu 6 bài ôn tập chương 3: Dãy số, cấp số cộng và cấp số nhân
- Giải câu 10 bài Ôn tập cuối năm
- Giải câu 3 bài 2: Hoán vị Chỉnh hợp Tổ hợp
- Giải câu 5 bài 3: Nhị thức Niu tơn