Giải câu 6 bài ôn tập chương 3: Dãy số, cấp số cộng và cấp số nhân
Câu 6: trang 107 sgk toán Đại số và giải tích lớp 11
Cho dãy số , biết \(u_1= 2, u_{n+1} =2u_n– 1\)(với \(n ≥ 1\))
a) Viết năm số hạng đầu của dãy
b) Chứng minh: bằng phương pháp quy nạp.
Bài làm:
a) Ta có năm số hạng đầu của dãy là:
b) Với , ta có: \(u_1= 2^{1-1}+ 1 = 2\) công thức đúng.
Giả sử công thức đúng với
Hay
Ta chứng minh công thức cũng đúng với
Hay là ta cần phải chứng minh
Ta có: (đpcm)
Vậy với mọi \(n\in {\mathbb N}^*\).
Xem thêm bài viết khác
- Giải câu 1 bài 3: Nhị thức Niu tơn
- Giải câu 5 bài 2: Hoán vị Chỉnh hợp Tổ hợp
- Giải câu 4 bài 2: Giới hạn của hàm số
- Giải bài 4: Cấp số nhân
- Giải câu 5 bài 1: Phương pháp quy nạp toán học
- Giải câu 1 bài 2: Giới hạn của hàm số
- Giải bài 2: Giới hạn của hàm số
- Giải câu 4 bài 3: Cấp số cộng
- Giải câu 6 bài 3: Một số phương trình lượng giác thường gặp
- Toán 11: Đề kiểm tra học kì 2 dạng trắc nghiệm (Đề 8)
- Giải câu 1 bài 5: Xác suất của biến cố
- Giải câu 12 bài ôn tập chương 4: Giới hạn