-
Tất cả
-
Tài liệu hay
-
Toán Học
-
Soạn Văn
-
Soạn đầy đủ
- Tiếng Việt 2 tập 2 KNTT
- Tiếng Việt 2 CTST
- Tiếng Việt 2 sách Cánh Diều
- Tiếng Việt 3 tập 2
- Tiếng Việt 3 tập 1
- Tiếng Việt 4 tập 2
- Tiếng Việt 4 tập 1
- Tiếng Việt 5 tập 2
- Tiếng Việt 5 tập 1
- Soạn văn 6
- Soạn văn 7
- Soạn văn 8 tập 1
- Soạn văn 8 tập 2
- Soạn văn 9 tâp 1
- Soạn văn 9 tập 2
- Soạn văn 10 tập 1
- Soạn văn 10 tập 2
- Soạn văn 11
- Soạn văn 12
-
Soạn ngắn gọn
- Soạn văn 12 ngắn gọn tập 1
- Soạn văn 12 ngắn gọn tập 2
- Soạn văn 11 ngắn gọn tập 1
- Soạn văn 11 ngắn gọn tập 2
- Soạn văn 10 ngắn gọn tập 1
- Soạn văn 10 ngắn gọn tập 2
- Soạn văn 9 ngắn gọn tập 1
- Soạn văn 9 ngắn gọn tập 2
- Soạn văn 8 ngắn gọn tập 1
- Soạn văn 8 ngắn gọn tập 2
- Soạn văn 7 ngắn gọn tập 1
- Soạn văn 7 ngắn gọn tập 2
- Ngữ văn VNEN
- Đề thi THPT QG môn Ngữ Văn
-
Soạn đầy đủ
-
Tiếng Anh
-
Vật Lý
-
Hóa Học
-
Sinh Học
-
Lịch Sử
-
Địa Lý
-
GDCD
-
Khoa Học Tự Nhiên
-
Khoa Học Xã Hội
-
Giải bài 1: Phương pháp quy nạp toán học
Dựa theo cấu trúc SGK toán lớp 11, KhoaHoc xin chia sẻ với các bạn bài: Phương pháp quy nạp toán học. Với kiến thức trọng tâm và các bài tập có lời giải chi tiết, hi vọng rằng đây sẽ là tài liệu giúp các bạn học tập tốt hơn.
Nội dung bài viết gồm 2 phần:
- Ôn tập lý thuyết
- Hướng dẫn giải bài tập sgk
A. LÝ THUYẾT
Phương pháp quy nạp toán học:
Để chứng minh một mệnh đề P(n) là đúng với mọi n Є N*, ta thường dùng phương pháp quy nạp toán học, được tiến hành theo hai bước như sau:
- Bước 1 (bước cơ sở): Kiểm tra mệnh đề P(n) đúng với n = 1.
- Bước 2 ( bước quy nạp): Giả thiết mệnh đề P(n) đúng với một số tự nhiên bất kì n = k, (k ≥ 1) (ta gọi là giả thiết quy nạp) và chứng minh rằng nó cũng đúng với n = k + 1.
Chú ý:
Nếu phải chứng minh một mệnh đề là đúng với mọi số tự nhiên n ≥ p (p là số tự nhiên) thì:
- Ở bước 1, ta kiểm tra mệnh đề đúng với n = p.
- Ở bước 2, ta giả thiết mệnh đề đúng với một số tự nhiên bất kì n = k, (k ≥ p) và chứng minh rằng nó cũng đúng với n = k + 1.
B. BÀI TẬP VÀ HƯỚNG DẪN GIẢI
Kiến thức thú vị
Câu 1: Trang 82 - sgk đại số và giải tích 11
Chứng minh rằng với n Є N*, ta có đẳng thức:
a) 2 + 5+ 8+.... + 3n - 1 = ;
b) ;
c) 12 + 22 + 32 +….+ n2 = .
Câu 2: Trang 82 - sgk đại số và giải tích 11
Chứng minh rằng với n ε N* ta luôn có:
a) n3 + 3n2 + 5n chia hết cho 3;
b) 4n + 15n - 1 chia hết cho 9;
c) n3 + 11n chia hết cho 6.
Câu 3: Trang 82 - sgk đại số và giải tích 11
Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có các bất đẳng thức:
a) 3n > 3n + 1;
b) 2n + 1 > 2n + 3
Câu 4: Trang 83 - sgk đại số và giải tích 11
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
Câu 5: Trang 82 - sgk đại số và giải tích 11
Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là
=> Trắc nghiệm đại số và giải tích 11 bài 1: Phương pháp quy nạp toán học
Xem thêm bài viết khác
- Giải câu 4 bài 2: Dãy số
- Giải câu 5 bài 1: Giới hạn của dãy số
- Giải câu 7 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 8 bài 1: Hàm số lượng giác
- Giải câu 6 bài 3: Nhị thức Niu tơn
- Giải câu 2 bài 2: Giới hạn của hàm số
- Giải câu 2 bài 1: Giới hạn của dãy số
- Giải câu 8 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 6 bài 3: Đạo hàm của hàm số lượng giác
- Giải câu 5 bài Ôn tập chương 5: Đạo hàm
- Giải câu 1 bài Ôn tập chương 5: Đạo hàm
- Giải câu 12 bài ôn tập chương 4: Giới hạn